Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 23(3): e13338, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38629461

RESUMO

Mycotoxins, ubiquitous contaminants in food, present a global threat to human health and well-being. Mitigation efforts, such as the implementation of sound agricultural practices, thorough food processing, and the advancement of mycotoxin control technologies, have been instrumental in reducing mycotoxin exposure and associated toxicity. To comprehensively assess mycotoxins and their toxicodynamic implications, the deployment of effective and predictive strategies is imperative. Understanding the manner of action, transformation, and cumulative toxic effects of mycotoxins, moreover, their interactions with food matrices can be gleaned through gene expression and transcriptome analyses at cellular and molecular levels. MicroRNAs (miRNAs) govern the expression of target genes and enzymes that play pivotal roles in physiological, pathological, and toxicological responses, whereas acute phase proteins (APPs) exert regulatory control over the metabolism of therapeutic agents, both endogenously and posttranscriptionally. Consequently, this review aims to consolidate current knowledge concerning the regulatory role of miRNAs in the initiation of toxicological pathways by mycotoxins and explores the potential of APPs as biomarkers following mycotoxin exposure. The findings of this research highlight the potential utility of miRNAs and APPs as indicators for the detection and management of mycotoxins in food through biological processes. These markers offer promising avenues for enhancing the safety and quality of food products.


Assuntos
MicroRNAs , Micotoxinas , Humanos , Micotoxinas/análise , MicroRNAs/genética , Contaminação de Alimentos/análise , Proteínas de Fase Aguda
2.
Food Chem ; 445: 138378, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38383214

RESUMO

Mycotoxins are common in many agricultural products and may harm both animals and humans. Dietary mycotoxins are reduced via physical, chemical, and thermal decontamination methods. Chemical residues are left behind after physical and chemical treatments that decrease food quality. Since mycotoxins are heat-resistant, heat treatments do not completely eradicate them. Cold plasma therapy increases food safety and shelf life. Cold plasma-generated chemical species may kill bacteria quickly at room temperature while leaving no chemical residues. This research explains how cold plasma combats mold and mycotoxins to guarantee food safety and quality. Fungal cells are damaged and killed by cold plasma species. Mycotoxins are also chemically broken down by the species, making the breakdown products safer. According to a preliminary cold plasma study, plasma may enhance food shelf life and quality. The antifungal and antimycotoxin properties of cold plasma benefit fresh produce, agricultural commodities, nuts, peppers, herbs, dried meat, and fish.


Assuntos
Micotoxinas , Gases em Plasma , Humanos , Micotoxinas/análise , Gases em Plasma/química , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Fungos , Inocuidade dos Alimentos
3.
Chem Biol Interact ; 387: 110799, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37967807

RESUMO

Mycotoxins frequently contaminate a variety of food items, posing significant concerns for both food safety and public health. The adverse consequences linked to poisoning from these substances encompass symptoms such as vomiting, loss of appetite, diarrhea, the potential for cancer development, impairments to the immune system, disruptions in neuroendocrine function, genetic damage, and, in severe cases, fatality. The deoxynivalenol (DON) raises significant concerns for both food safety and human health, particularly due to its potential harm to vital organs in the body. It is one of the most prevalent fungal contaminants found in edible items used by humans and animals globally. The presence of harmful mycotoxins, including DON, in food has caused widespread worry. Altered versions of DON have arisen as possible risks to the environment and well-being, as they exhibit a greater propensity to revert back to the original mycotoxins. This can result in the buildup of mycotoxins in both animals and humans, underscoring the pressing requirement for additional investigation into the adverse consequences of these modified mycotoxins. Furthermore, due to the lack of sufficient safety data, accurately evaluating the risk posed by modified mycotoxins remains challenging. Our review study delves into conjugated forms of DON, exploring its structure, toxicity, control strategies, and a novel animal model for assessing its toxicity. Various toxicities, such as acute, sub-acute, chronic, and cellular, are proposed as potential mechanisms contributing to the toxicity of conjugated forms of DON. Additionally, the study offers an overview of DON's toxicity mechanisms and discusses its widespread presence worldwide. A thorough exploration of the health risk evaluation associated with conjugated form of DON is also provided in this discussion.


Assuntos
Micotoxinas , Tricotecenos , Animais , Humanos , Contaminação de Alimentos/análise , Tricotecenos/toxicidade , Micotoxinas/toxicidade , Micotoxinas/análise , Alimentos
4.
Animals (Basel) ; 12(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077985

RESUMO

This study evaluated the accuracy of sequence imputation in Hanwoo beef cattle using different reference panels: a large multi-breed reference with no Hanwoo (n = 6269), a much smaller Hanwoo purebred reference (n = 88), and both datasets combined (n = 6357). The target animals were 136 cattle both sequenced and genotyped with the Illumina BovineSNP50 v2 (50K). The average imputation accuracy measured by the Pearson correlation (R) was 0.695 with the multi-breed reference, 0.876 with the purebred Hanwoo, and 0.887 with the combined data; the average concordance rates (CR) were 88.16%, 94.49%, and 94.84%, respectively. The accuracy gains from adding a large multi-breed reference of 6269 samples to only 88 Hanwoo was marginal; however, the concordance rate for the heterozygotes decreased from 85% to 82%, and the concordance rate for fixed SNPs in Hanwoo also decreased from 99.98% to 98.73%. Although the multi-breed panel was large, it was not sufficiently representative of the breed for accurate imputation without the Hanwoo animals. Additionally, we evaluated the value of high-density 700K genotypes (n = 991) as an intermediary step in the imputation process. The imputation accuracy differences were negligible between a single-step imputation strategy from 50K directly to sequence and a two-step imputation approach (50K-700K-sequence). We also observed that imputed sequence data can be used as a reference panel for imputation (mean R = 0.9650, mean CR = 98.35%). Finally, we identified 31 poorly imputed genomic regions in the Hanwoo genome and demonstrated that imputation accuracies were particularly lower at the chromosomal ends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA